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ABSTRACT
Motion planning algorithms for vehicles in an offroad environment have to

contend with the significant vertical motion induced by the uneven terrain. Besides
the obvious problems related to driver comfort, for autonomous vehicles, such
“bumpy” vertical motion can induce significant mechanical noise in the real time
data acquired from onboard sensors such as cameras to the point that perception
becomes especially challenging. This paper advances a framework to address the
problem of vertical motion in offroad autonomous motion control for vehicular
systems. This framework is first developed to demonstrate the stabilization of the
sprung mass in a modified quarter-car tracking a desired velocity while traversing
a terrain with changing height. Even for an idealized model such as the quarter-car
the dynamics turn out to be nonlinear and a model-based controller is not obvious.
We therefore formulate this control problem as a Markov decision process and
solve it using deep reinforcement learning. The control inputs that are learned
are the torque on the wheel and the stiffness of the active suspension. It is
demonstrated here that a time-varying velocity can be tracked with reduced chassis
oscillations using these control inputs. We anticipate that reducing such oscillations
will lead to sensor stabilization, which will improve perception and reduce the
required frequency of recalibration. The deep reinforcement learning approach
advanced in this paper remains useful for offroad motion planning when complex
terramechanics and uncertain model parameters are introduced or the vehicle
model increases in complexity.
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1. INTRODUCTION

Traditional path planning algorithms like A*,
Dijkstra’s algorithm, and RRT provide a real time
solution to complex path planning problems by
leveraging high performance computing [1]. While
doing so, such algorithms rarely consider the detailed
dynamics of the vehicle or the impact those dynamics
might have in executing the plan from a global,
non-reactive path planner. At present, global motion
planning algorithms work siloed, with low level
controllers being used for vehicle stabilization or
disturbance rejection.

Reinforcement learning is a powerful technique
which can incorporate the low-level dynamics of
a physical system without its explicit knowledge
[2, 3, 4]. Having a trained reinforcement learning
agent working in tandem with the high-level motion
planner eliminates the need for a traditional onboard
controller. Such a framework increases the system’s
robustness to unknown environment dynamics in
comparison to traditional model-based methods,
which rely on the accuracy of the assumed model
[2, 5]. A deep reinforcement learning agent can be
used in conjunction with a high-level path planner
to reduce the complexity of the deep reinforcement
learning problem and training [6]. Here, we assume
that a path is given from a global planner, thus
reducing the motion planning problem to control
of longitudinal vehicle velocity with simultaneous
stabilization of the chassis. Reinforcement learning
for control of mobile robots designed specifically for
continuous action and observation space is an area
much to be explored [7]. In this paper we propose
a reinforcement learning agent which considers the
vertical dynamics of a vehicle while traversing an
off-road terrain setting. Most traditional algorithms
do not consider vertical vehicle dynamics with
high-level path planning in a closed loop, likely due
to the increased computational cost [8]. This is
significant, as the vertical dynamic response of a
vehicle to the off-road terrain can make an optimal
path become suboptimal or even dangerous at high

speeds.
The general reinforcement learning framework

requires the formulation of the problem as a Markov
decision process [9] in order to model the available
vehicle movement options. Here the state transition
dynamics are derived from a reduced order model
of a military vehicle on uneven terrain. While the
bicycle model has become a standard model in many
vehicle applications [10, 11], here we expand the
focus to the vertical dynamics of the vehicle, by
considering instead a reduced longitudinal dynamics
model, but including suspension forces, the normal
reaction at the wheel, and vertical oscillations of the
vehicle chassis. These dynamics are modeled as
a single quarter-car suspension with linear stiffness
and damping between the wheel and the sprung
mass representing the chassis. This allows for the
consideration of resistance and reaction forces at the
ground and in the suspension, which can become
significant when applications require aggressive or
agile maneuvers of the vehicle over rough terrain.

With this in mind, we develop a reinforcement
learning formulation with an objective function that
rewards stabilization of the sprung mass and tracking
of a desired velocity. In addition, constraints are also
imposed on the vehicle velocities and accelerations,
the input torque, and the normal reaction at the
wheel to prevent loss of contact. The control
actions are taken to be the torque applied at the
wheel and the stiffness of the suspension. We
use numerical simulation to demonstrate that this
proposed model, when coupled with the previously
described reinforcement learning framework can
yield an effective control strategy on uneven terrains.
The observations are assumed to be the full state
of the quarter car and preview of the terrain
elevation over a look-ahead horizon. Such a preview
is crucial, as it allows for disturbance rejection
while accounting for actuator delay associated with
changes to suspension stiffness.

The rest of the paper is organized as follows:
Section 2 discusses the derivation of the vehicle
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dynamics model and terrain interactions. Section 3
discusses the formulation of the velocity tracking and
stabilization problem within the deep reinforcement
learning framework. Section 4 presents numerical
results for the trained reinforcement learning agent
navigating the vehicle on an uneven terrain while
tracking a time-varying velocity. Section 5 concludes
the paper with discussion of the results and avenues
for future work.

2. MODELING
2.1. Vehicle Model

A full, high-fidelity vehicle model that considers
the complete dynamics of an offroad vehicle would
be too computationally expensive to use in controller
design. Instead a model is implemented that
captures the most significant aspects of the vehicle
dynamics. The model considered here is a quarter car
suspension for the vertical dynamics coupled with a
model for the longitudinal motion of the vehicle due
to a torque produced at the wheel. A schematic of
this model and the coordinates employed is shown in
Fig. 1.

Figure 1: Schematic of quarter-car vehicle model

The equations of motion in terms of the
generalized coordinates depicted in Fig. 1 are given
below. These are derived by considering a sum of
forces acting on each of the masses.(

m1 +m2 +
I

R2

)
ẍ− T

R
+N

∂h

∂x
+ Ff = 0 (1)

m2 ÿ+k (y − h(x)− L0)+c

(
ẏ − ∂h

∂x
ẋ

)
+m2g = 0

(2)
Eq. (1) describes the longitudinal motion of the

vehicle in terms of the coordinate x, defined as of
the longitudinal displacement of the wheel. Here, the
parameters m1, I , and R are the mass, mass moment
of inertia, and radius of the wheel, respectively; m2

is the one quarter of the mass of the vehicle chassis;
and T is the torque applied at the wheel. For this
effort, the terrain elevation is assumed to be given
by a smooth function h(x), whose first and second
derivatives with respect to x are also known.

Eq. (2) describes the vertical motion of the
vehicle chassis in terms of the coordinate, y, which
measures the absolute displacement of the upper
mass from a fixed datum. The coefficients k and
c are stiffness and damping coefficients associated
with the suspension, and the m2 g term represents the
force due to gravity.

There are three forcing terms in Eq. (1): one due
to the applied torque, T/R, one due to a dissipative
friction Ff at the wheel/soil interface, and one due to
a projection of the normal force due to the gradient
of the road elevation N∂h/∂x. The normal force, N
is found by considering the vertical dynamics of the
two masses and by assuming that the wheel remains
in contact with the ground. Mathematically, this can
be written as a constraint on the vertical position of
the wheel, y1:

y1 = h(x) +R (3)

With this constraint, the normal force is given by

N = m1

(
∂2h

∂x2
ẋ2 +

∂h

∂x
ẍ+ g

)
− c

(
y − ∂h

∂x
ẋ

)
− k (y − h(x)− L0)

(4)

The dissipative forcing Ff is taken to account
for rolling resistance, air drag, and friction forces at
the wheel, all which resist the vehicle’s longitudinal
motion. This force is parameterized in terms of the
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Figure 2: Interfacing the actor critic networks with system dynamics

the forward velocity of the vehicle, ẋ as

Ff = −Cv1ẋ− Cv2 sign (ẋ)ẋ
2 (5)

where Cv1 and Cv2 are positive constants.
The values used here for simulation and training

of the reinforcement learning agent are chosen to be
representative of the parameter values for a full-scale
offroad vehicle. The parameter values used here are
summarized in Table 1.

Table 1: Parameter descriptions and nominal values

Parameter Description Value
m1 wheel mass 75 kg
m2 1/4 chassis mass 300 kg
R wheel radius 0.3 m
I wheel moment of inertia 3.375 kg·m2

k suspension stiffness variable
c suspension damping 103 N·s/m
L0 undeformed spring length 0.5 m
Cv1 friction coefficient 5 N·s/m
Cv2 friction coefficient 0.6 N· s2/m2

3. REINFORCEMENT LEARNING FORMULATION
The success of any reinforcement learning

problem is determined by the choice of the agent
and strategic shaping of the reward function.

Depending on the complexity of the control
challenge, the construction of the reinforcement
learning environment can also have an impact on
both the training time and the controller performance.
For instance, the environment may take form of a
physical robot interacting in the real world, or a high
fidelity simulation engine or a reduced order model
of the vehicle’s dynamics, with each platform having
its own set of challenges. Fig. 2. gives a high level
overview of the observations and actions involved
and how the agent is interfaced with the environment.

The development of the three subsections - the
agent, the reward function and the environment have
been discussed below.

3.1. Agent
The choice of the agent is largely dependent on

the application of the controller [12]. For developing
reinforcement learning based controllers for robotics
applications or any other controls applications with
high non-linearities in the system’s physics, it is
useful to use neural networks as universal function
approximators for the value function approximations.
For the specific problem of velocity tracking and
sprung mass oscillation damping, it is essential to
have a continuous observation space and action space
for fine controller resolution. Both the criteria of
using neural network as function approximator and
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having a continuous action and observation space are
satisfied by the Deep Deterministic Policy Gradient
algorithm (DDPG) [13, 14]. The basis of the
DDPG agent is formed by two neural networks
termed as the actor network and critic network. The
observations received from the environment are the
quarter-car’s states for velocities and displacements
along horizontal and vertical axes for the sprung
mass (x, ẋ, y, ẏ) and terrain preview (h(x)).
These coupled with the actions – wheel torque and
suspension stiffness (T , k) serve as an input to the
critic network. The critic network generates and
stores an expected long term return value known
as the Q-value for the input state-action pair. The
actions for the next time step are then generated
by the actor and are based on observations and
the Q-values provided by the critic from the past
experience.

3.2. Reward Function
The weights of both the actor and critic networks

are updated based on the current reward and past
experiences randomly sampled from experience
buffer [14]. As a result, a poorly shaped reward
function could incentivize negative actions or delay
the overall training process [15]. For the current
problem, the horizontal velocity to be tracked and
the vertical velocity of the sprung mass parameterize
the reward function. The trade-off between these
two penalty terms to achieve maximum reward is a
classic optimization routine for which the agent is
trained to provide a solution. Eq.(6) describes the
reward function where desired velocity was denoted
as V∗ and W1, W2 were the assigned weights for the
function parameters.

Reward = −W1(V∗ − ẋ)2 −W2 ẏ
2 (6)

The choice of the weights does not come naturally
but is a systematic trade-off depending on which
parameter is desired to be tracked more accurately.
In this work, the values of W1 and W2 are chosen
heuristically to balance the error in longitudinal and

vertical velocities, relative to their respective nominal
values. For example, if both objectives, velocity
tracking and oscillation damping, are desired to be
tracked with equal importance, the difference in their
error magnitudes needs to be taken in account. The
velocity tracking error in real time usually has an
error magnitude of 10 where as the oscillations are
of the magnitude of 10−1 or 10−2. Specifying equal
weight in such a scenario will give conversely give
more importance to velocity tracking and less to
oscillations damping.

3.3. Environment
The reinforcement learning environment

interfaces with the agent and provides the
observations as a feedback for the actions
commanded by the agent. In this project, the
environment is defined by the combined quarter-car
dynamics and the terrain model. The torque
and stiffness updates provided by the DDPG
agent are updated in real time in the quarter-car’s
dynamic equations. The equations of motion are
then simulated for a time-step and the updated
vehicle states are sent back to the agent from the
environment. The observations received by the
DDPG agent are a combination of the vehicle states,
terrain preview and the tracking error. The terrain
preview has been constructed as values of the terrain
elevation function h(x) sampled over some finite
look-ahead distance.

The simulation framework has been setup using
the MATLAB-Simulink Reinforcement Learning
toolbox [16].

4. RESULTS
In this section, we present the results of

numerical simulation in which the reinforcement
learning algorithm described in the previous section
is applied to the velocity tracking and stabilization
problem for the quarter-car vehicle model moving
over an uneven terrain. The terrain considered in
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Figure 3: Vehicle velocities in simulation of the
trained reinforcement learning agent for velocity
tracking over an uneven terrain. (a) Longitudinal
velocity of the vehicle (blue) with the desired
velocity (dotted black). (b) Vertical velocity of the
vehicle chassis.

the training of the reinforcment learning agent is
described by constant friction parameters, while the
height of the terrain is described by summation
of cosine functions in space of the form h(x) =∑N=4

i=1 Hi cos(ωix). For clarity of demonstration, in
the simulations presented here, we consider a terrain
elevation described by a single cosine wave, where
the amplitude and frequency are taken to be H1 = 0.1
m and ω1 = 0.4 rad/m. The reward function for the
problem formulation is described by Eq. 6, where the
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Figure 4: Control sequence specified by trained actor
network for velocity tracking over an uneven terrain.
(a) Wheel torque (b) Suspension stiffness.

longitudinal velocity to be tracked varies with time
as

V∗(t) =

{
25 m/s t ≤ 50 s
10 m/s t > 50 s

(7)

as shown by the dotted line in Fig. 3 (a).
The resulting trajectories of the longitudinal and

vertical velocities of the vehicle in the simulation
of the trained reinforcement learning agent over this
terrain are shown in Fig. 3. It can be seen that
the desired longitudinal velocity is tracked well over
time, with small steady-state error. The vertical
velocity also experiences only one brief period of
high velocity oscillations, associated with the sudden
change in desired forward velocity, which occurs at
t = 50 s.

Deep reinforcement learning for simultaneous path planning and stabilization of offroad vehicles, Salvi, et al.

Page 6 of 9



Proceedings of the 2021 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

The control trajectories of the wheel torque and
the suspension stiffness chosen by the trained actor
network to achieve these velocities are shown in Fig.
4. In the training of the reinforcement learning agent,
as well as in its simulation, the torque values are
limited to a range of [0, 103 N ·m] and the suspension
stiffness values are limited to a range of [5×103, 2.5×
104 N/m]. We see that given these action ranges, the
agent selects a large value of torque at around 700
N·m for the first half of the simulation while trying
to track the 25 m/s velocity, before settling to a lower
torque of below 200 N·m for tracking the 10 m/s
velocity.

While the forward velocity is mostly affected
by the choice of wheel torque, the velocity and
magnitude of oscillations of the vehicle chassis can
be affected by choice of suspension stiffness. In
particular, the stiffness should be chosen so that the
frequency of the forcing imparted on the suspension
by the terrain is far from the resonant frequency
of the suspension system in order to reduce the
magnitude of oscillations. That is, by changing
the suspension stiffness, the resonant frequency of
the system can be altered to avoid oscillations and
stabilize the vehicle body.

For a terrain with a single frequency of
oscillations, the spatial frequency of the terrain
directly translates to a forcing frequency on the
suspension when the vehicle is travelling with
constant forward velocity. Thus, the optimal choice
of suspension stiffness for traversing such a terrain
can be understood in terms of the suspension’s
frequency response for the given terrain. Such a
response curve is computed from constant torque
simulation of the equations of motion on this
terrain for several constant values of the suspension
stiffness, k and the resulting curves are shown in Fig.
5.

From Fig. 5, it can be seen that for tracking
a velocity of V∗ = 25 m/s, the optimal choice
of stiffness is the minimum value of the allowable
range. However, the velocity value of V∗ = 10 m/s
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Figure 5: Frequency response of the suspension
under constant wheel-torque simulation for varying
values of suspension stiffness, k. Amplitude of
chassis oscillations versus steady state longitudinal
velocity over terrain of constant spatial frequency.

occurs near the resonant peaks of the curves with
lower stiffnesses, and thus it is optimal to choose a
higher stiffness value. This agrees with the action
sequence chosen by the trained actor network, as
it minimizes the stiffness in the early part of the
simulation while tracking a high velocity, and nearly
maximizes the allowable stiffness while tracking a
lower velocity. This can be seen in Fig. 4 (b).
This result indicates that using an active suspension
in conjunction with a velocity tracking controller
allows for significantly reduced oscillations of the
upper mass. Fig. 5 shows that the stiffness change
selected by the reinforcement learning agent enables
better stabilization than any single stiffness value
held constant through the simulation. As detailed
previously, this improved stabilization can lead to
improved rider comfort, enhanced perception from
onboard cameras and other sensors, and decreased
mechanical noise through the system.

5. CONCLUSION AND FUTURE WORK
The formulation and results presented here lay

the groundwork for future work in more complex
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scenarios, such as on dynamic, deformable terrains
with unknown or partially known properties or
planning for the coordination of multiple vehicles.
This work has applications to more than a few
problems for the military and may be especially
useful for non-conventional unmanned ground
vehicles. Such systems can also serve a part of a
larger cyber physical system which works in sync
with aerial vehicles that assist in finding a suitable
path for a mobile robot. Data from an aerial vehicle
could provide extended look-ahead information,
which the reinforcement learning algorithm can
consider to improve the ground vehicle’s traversal
approach. Further, we plan to expand our verification
and understanding of this approach to more rigorous
datasets, and demonstrate the effectiveness of the
proposed methods experimentally on a physical
rover or scaled vehicle in future work. We also
expect that this work can be usefully extended to
include input from camera sensors in a vision-based
deep reinforcement learning framework, as the deep
reinforcement learning algorithms employed here
have been previously shown to be effective when
using raw pixel data as input. Such a framework
would allow for more advanced motion planning and
maneuvering.
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[15] M. Grześ, “Reward shaping in episodic
reinforcement learning,” in Proceedings of the
16th Conference on Autonomous Agents and
MultiAgent Systems, pp. 565–573, 2017.

[16] The MathWorks, Inc., Reinforcement Learning
Toolbox. Natick, Massachusetts, United States,
2019.

Deep reinforcement learning for simultaneous path planning and stabilization of offroad vehicles, Salvi, et al.

Page 9 of 9


